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A REVIEW AND SOME EXTENSIONS OF 

TAKEMURA'S GENERALIZATIONS OF COCHRAN'S THEOREM 

by 

George P.H. Styan 

McGill University 

This is a review of the Stanford Technical Report No.44 by Akimichi 

Takemura "On Generalizations of Cochran's Theorem and Projection Matrices" 

(August 1980). A number of extensions are also presented.  In Section 1 

we review the notions of direct sum of matrices and of vector spaces, and 

show the equivalence of several different definitions. We also examine Take- 

mura' s "independent" vector spaces and find that they coincide with the 

"disjoint" vector spaces considered by Rao and Yanai (1979). The connection 

of this concept with rank additivity is explored in Section 2.  In Sections 

3 and 4 we elaborate and extend several results of Takemura's on rank additivity 

and r-potent matrices and matrix polynomials.  These results build on those 

given by Anderson and Styan (1980). 

1. Direct Sums, Virtual Disjointness and Independence. 

Let the vector spaces U ,   ..., U     be subspaces of a vector space X of m*l 

column vectors and let the matrices A , ..., A,  be defined by 

(1.1) C(A.) = U.,      i = 1, ..., k, 

where C(.) denotes column space (range). The matrices A , ..., A,  all have the 

same number of rows: m. Let A. be m*n. and write n = E,n.. Let 
li 1 l 



(1.2) D    =     / kx 

\ 

be the    km *n    block-diagonal matrix of the    A.'s. 

The matrix    D    is defined as the diAzct &um o£ tk<L ma&iiceA A ,   ..., A 
•L K 

(cf. Marcus and Mine, 1964, pages 5-6). This definition is also valid when the 

A. do not all have the same number of rows. We may write 
l 

(1.3) D = A © ... © A . 

Let the kmxm partitioned matrix 

(1-4) K = (I , ..., I )', 
m      m 

cf. Anderson and Styan (1980, p.11). Then the m*n partitioned matrix 

(1.5) B = (A^ .... A^ = K'D 

spans the union of the vector spaces Ü , ..., U , 
i. K 

(1.6) U=      U   U...UÜ  = C(A, . .., Ak)  =  C(B). 

We define the matrices    A ,   ...., A      and the vector spaces    U ,   ...,    U 

to be mutuaZJLy viAtualZy dl&joZnt whenever 



(1.7) r(Ar ..., AJP = j£r(A.) 

where r(.) denotes rank, cf. Styan (1981). We may write (1.7) as 

(1.8) r(K»D) = r(D) 

or equivalently as 

(1.9) diro(U u ... u II) = Z^dimU., 
X K        X     X 

where dim(.) denotes dimension o£ the vector space. 

When the vector spaces U  , ..., U  are miftioZty viAtuaZly dt&jo-int  then 
X K 

we define their union as the dOtzct -6uw? ofi the. vzctox. Apac&i    U ,   ...,   LL, and 

we write 

(1.10) Ü    9  ...  © U    =    U    u   ...   u U    =    C(A ,   ..., Ap     =      C(K'D). 

Rao and Mitra (1971, page 3, lines 5-6) define the two vector spaces U. and 

U.    to be vVituaJLty dU>jo>int whenever their intersection 

(1.11) Ü. n U. = {0} , 

the null vector only, or equivalently 

(1.12) r(Ai? A..) = r(A.) + r(Aj) , 



4 

cf. Marsaglia and Styan (1974, page 272 (2.19)). Clearly (1.7) •* (1.12) for 

all i / j and so (1.9) =>  (1.11) for all i £  j. The converse, however, holds 

in general only for k = 2; if k = 3 and 

(1-1S>      Al " ( 0 •    A2 • ( I) • A3 " ( 1 )• 

then (1.12) holds for all i ±  j but (1.7)  does not. 

Rao and Yanai (1979, page 2, section 2, lines 4-5) use (1.11) to define 

U. and U. "disjoint" and then (page 2, Definition 1) define U , ...f   U     as 
X        J IK 

"disjoint" whenever 

(1.14)      u e U u ... u Uk  = C(A1, ..., A^ = C(B) = C(K'D) 

has the unique representation 

(1.15)     u = E
1
u
iJ    

ui £^,1 = l,...,k. 

Rao (1973, page 11 (vii)) uses this as a definition of "direct sum"; see also 

Takemura (1980, page 2, lines -6 and -7). 

To see that (1.15) follows from (1.7) we write 

(1.16)      u = Bx(1)  = K»DxC1)  = BxC2)  = K'Dx(2). 

Then 

(1.17)      K'DX(1) . K'D*(2)   .   DX(1)=  DX(2), 



which follows at once from (1.8) and the left-hand rank cancellation rule 

(Anderson and Styan (1980, page 12, Lemma 2.2)). 

A connection between the definitions of matrix direct sum and vector-space 

direct sum is provided by the equality of the row spaces of l*n row vectors 

(1.18) R(K'D) = R(D) 

or equivalently 

(1.19) R(A^, ..., AJP = R/Ax       \   =  R(AX © ... © Ajp 

This follows from (1.8) since R(K'D) C R(D) always holds. 

There seems to be no direct connection, however, between the vector-space 

direct sum U © ... © U, = C(A , ..., A.) of np<l vectors and the column 

space of kmxl vectors of the matrix direct sum C(A © ... © A ) . 

The "definition" given by Takemura (1980, page 2, paragraph 3, line 3) of 

U , ..., Ü  being (linearly) independent is that if 
JL K 

k 
(1.20) u.  Gü.,  i = l,...,k    and    E.u.  = 0    then      u.  = 0,  i = l,...,k. 

This is given by Rao and Yanai  (1979, page 4)  as the "result"  (1):    that if    A^, 

..., A,     are    "disjoint"    then 

(1.21) E^A.x.   =    0      <=*     A.x.   =0, i = l,...,k. v        ' 1 i i li 



We may write (1.21) as 

(1.22)      K'Dx =0  <->   Dx = 0, 

which follows at once from (1.8) and the left-hand rank cancellation rule (cf. 

Anderson and Styan, 1980, page 12, Lemma 2.2). 

Rao and Yanai (1979, page 5, Theorem 1) prove that if 

(1.23)      Y=/Yl\ = B" = CV •••' V 

is a generalized inverse of B then 

(1.24)      A.Y A. = A., i = l,...,k   and      A.Y.A. =0 for all i t  j . 
liii l l j ' 

follow if and only if the A.  are "disjoint". We may write (1.23) as 

(1.25) K'DYB = K'D = B 

and (1.24) as 

(1.26) DYB = D. 

When the A. are disjoint, (1.8) holds and so (1.25) =* (1.26) using the left-hand 

rank cancellation rule (Anderson and Styan, 1980, page 12, Lemma 2.2). Conversely 

(1.26) implies that r(D) < r(B) = r(K*D) < r(D)  and so (1.8) holds 



and the A. are "disjoint". 
l 

This result from Rao and Yanai (1979,  page 5, Theorem 1) closely parallels 

2 
the result of Takemura (1980, page 4, Proposition 2.3): that if P = P  and 

C(P) = U = U    9  ... ® U     with U      ..., U      "independent" then P = lh>., with 

(1.27)     P2 = P., i = 1,... ,k, and  P.P. = 0 for all i t  j, 

and the P. are unique. The correspondence between Takemura and Rao § Yanai 

is found by setting P. = A.Y.; the assertion of uniqueness was not given by Rao 

§ Yanai. 

To prove Takemura's Proposition 2.3 let us write 

(1.28)      P = BY = E^A.Y. 
Ill 

for some generalized inverse Y = B , cf. (1.23), and Theorem 3 of Marsaglia and 

Styan (1974, page 273).  Setting P. = A.Y.  then shows that (1.24) => (1.27). The 

converse follows from  r(A.) = dirnü". = r(P.) = r(A.Y.) and the right-hand rank 
l      li     ii ö 

cancellation rule Lemma 2.1 in Anderson and Styan (1980, page 12). 

To see that the P. are unique we write 

(1.29)      P = BZ,     where Z = B' 

not necessarily equal to Y. We may do this in view of Theorem 3 of Marsaglia and 

Styan (1974, page 273). When the A. are "independent" then 

(1.30)      P = K'DY = K'DZ =>      DY = DZ 



using (1.8) and the left-hand rank cancellation rule, and so 

is uniquely determined. 

2.  Projection and Idempotent Matrices. 

2 
The square matrix A is idempotent whenever A = A;  such a matrix is 

called a "projection matrix" by Takemura (1980, page 2). An interesting dis- 

cussion of this terminology is given by Ben-Israel and Greville (1974, page 

51, footnote). 

Takemura's Proposition 2.1 closely parallels Corollary 11.2 of Marsaglia 

and Styan (1974, page 283). Since the null space 

(2.1)      W(I - A) = {x : (I-A)x =0} = {x : Ax = x} 

it would seem more appropriate to replace (iii) and (iv), respectively, by 

(iii)' C(A) = W(I-A),      and    (iv) • W(A) = C(I-A) . 

From (1.7) we see that 

(v)        C(A) and C(I-A) are "independent"^» r(A, I-A) = r(A) + r(I-A). ... (v)' 



9. 

Then it is obvious that (i) <=*• (ii) and that (iii) ' *=» (iv) ', while (i) <=* (v) ' 

is  (5.15) *=* (5.21) in Corollary 11.2 of Marsaglia and Styan (1974, page 283), 

and   (i) <=> (iii)'  is proved by Anderson and Styan (1980, pages 7-8, section 2.1) 

Takemura's Proposition 2.2 (page 4) extends Theorem 1.1 of Anderson and Styan 

(1980, page 5). Let A , ..., A  be square matrices, not necessarily symmetric, 

and let A = £ A.. Consider the following statements 

2 
(a) A. = A.,     i = l,...,k, 

(b) A.A. = 0 for all i t  j, 

(c) A2 = A, 

(d) zJrCA.) = r(A), 

(dl)  r(Ax, ..., Ak) = ^r(Aj, 

(d2)  C(A , ..., A ) = C(A). 
1      k 

Then Takemura's Proposition 2.2 is that 

(a) , (b) =» (c), (dl) , (d2) 

In their (1.4), Anderson and Styan (1980, pages 5 and 11A) proved that 

(a), (b) => (c), (d) 

That (d) =* (dl)  is  (6.1) => (6.2) in Theorem 13 of Marsaglia and Styan (1974, 

pages 284-285).  That  (dl) =*• (d2)  follows at once since C(A , ..., A ) always 
X K 

contains C(A), or equivalently C(K'D) 3 C(K'DK). 

Since (a), (b) =* (dl) Takemura (1980, page 5, lines -8 to -10) suggests 

that "it may well be justified to call projection matrices A., i = l,...k, 



10. 

(linearly) independent if A.A. = 0 for all i j-  j." I think that this is 

not very wise since 

(a), (dl) ^(b); 

i.e./'independent" projections A , ..., A  are not necessarily "pairwise 
J. K 

orthogonal": A A =0 for all i i  j. For example with k = 2, let 

t2-2'   *«-(! !)• k>-(i D- 
Takemura's Proposition 2.3 (page 4) has been discussed already in this 

review (see page 7). 

Takemura's Proposition 2.4 (page 6) is well known and can easily be proved 

without diagonalizability (I prefer using "diagonability" and will do so below), 

cf. e.g., Rao (1973, page 28 (i) ). 
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3. Cochran-type Theorems. 

Takemura's Lemma 3.1 (page 7) builds on his Proposition 2.2 to show that 

Cd) (dl), (d2) 

We have already shown that (d) *"* (dl), (d2) > cf. page 9 of this review. To 

go the other way let us write: 

(dl) 

(d2) 

(d) 

r(K«D) = r(D) 

C(K'D) = C(K»DK) 

r(K'DK) = r(D). 

Clearly (d2) => r(K»D) = r(K'DK)  and so (dl), (d2) =» (d). 

Takemura's Theorem 3.2 (page 9) builds on Theorem 3.3 of Anderson and Styan 

(1980, page 24), but does not seem to be a "simpler (but equivalent) version". Let 

us write 
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(a) 

00 

c«or 

Cd) 

(e2) 

A.   = 
l 

A., 
l 

A.A. 
i  3 

= 0 

AT = A, 

^r(A.)   = r(A), 

AA.   = 
l 

= A.A 
l 

> 

1 ~~ !)•••) Kj 

for al1 i ^ j , 

X — 1 j i « • j K i 

The condition (e2) was used by Anderson and Styan (1980, page 18, Theorem 3.1) 

Takemura's Theorem 3.2 then shows that 

(a) , Cb) <=* (c) , Cd), (e2) 
r r 

That 

Ca) , (b) => (c) , (d) 
r r 

was proved by Anderson and Styan C1980, page 18, Theorem 3.1), while 

Cb) =* Ce2) 

always holds. To go the other way, we note first that 

Cd), Ce2) •* Cb). 

This was proved for symmetric matrices by Luther C1965, page 684, Theorem 1) 

and for square matrices not necessarily symmetric by Marsaglia (1967, page 461, 

Theorem 3); see also Marsaglia and Styan C1974, page 286, Theorem 15(11)). Hence 



13. 

(c) , (d), (e2) •* (b), (c) => Ca) , (b) 
r r    r 

using (3.23) on page 25 of Anderson and Styan (1980). In their Theorem 3.3 

Anderson and Styan (1980, page 24) proved that 

where 

Since 

(a)  (b) ~(c) , (d), (e2) 
r r        r 

(e2)   :   Ar_2A. = A.Ar'2,       i=l,...,k. 
r l   l   ' 

(e2) => (e2) and       (b) •* (e2) 
r 

always hold, and since 

(d), (e2) =» (b) 

(see page 12 above) it seems to me that Takemura's Theorem 3.2 is equivalent to the 

Anderson and Styan Theorem 3.3. 
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4. Matrix Polynomials. 

Takemura's Theorem 3.3 (page 10) extends the Anderson and Styan Theorem 3.3 

by replacing their (a) and (c) conditions by a matrix polynomial P(.) of degree 

at least 2. Let us write 

(a) 

(a) 

P0 

PI 

(b) 

cop 

Cd) 

(e2) 

PCA..)   = 0, i-l             Tc -1-      •      lj   «<   *)"•) 

A.P(A.)   = 0, 
l       l 

X   =   1,•••,K, 

A.A.   = 0 
i  3 

for all    i f j, 

P(A)   = 0, 

E^rCA.)   = r(A), 

AA.   = A.A, 
l         l 

X   —   i,«.,>K. 

Takemura's Theorem 3.3 then shows that 

where 

(Op, Cd), (e2) -> (a)p, (b), 

wP- (
W

PO 
i f  P(0) = 0, 

f  P(0) / 0. 

Since (d), (e2) =* (b) always holds, cf. page 12 above, Takemura's Theorem 3.3 

reduces to 

(4.1) (b), (c)p, (d) =* (a)p. 
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We strengthen (4.1) by showing that 

(4-2) (b), (c)p, (d) =* (a)J , 

where 

(a)J :  P(Ai) = c(I - A'Aj),     i=l,...,k, 

P(0) = cl, and A  is a generalized inverse of A. Then (a)* =» (a)p  if c = 0. 

To prove (4.2) we note that when (b) holds 

(4.3) AP = z^A?- 
1 l 

for any positive integer p, and so 

(4.4) P(A) = cl + Z^[P(A.) - cl] 
1   l 

When (d) holds we may apply Theorem 1.2 of Anderson and Styan (1980, page 6) to 

find 

(4.5) A.A"A. = A. ,  i = l,...,k, and A.A"A = 0  for all i £  j 
ill i  j 

Postmultiplying (4.4) by A~A. and applying (4.5) yields 

(4.6) [P(A)]A"A. = cA"A. + [P(A.) - cl],       i = l,...,k, 

and so (c)p => (a)J. Premultiplying (a)* by A. yields (a)  , 
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Takemura's Lemma 4.1 (page 14) shows that if P(x) = 0 has no multiple root 

and if (c) : P(A) = 0 holds, then A is diagonable.  Since (by definition) the 

minimal polynomial must divide P(A) it follows that when P(A) has no multiple 

root then neither does the minimal polynomial $(A).  This characterizes diagonability 

of the matrix A , cf, Mirsky (1955, page 297, Theorem 10.2.5), and so the con- 

dition in Lemma 4.1 does not seem to be as strong as Takemura claims on page 

13 (line -1). 

Takemura's Theorem 4.1 is not new.  It contains his Lemma 4.1 and the de- 

composition into "independent projections", more usually known as "principal 

idempotents" (cf. Ben-Israel and Greville, 1974, pages 52-55, especially Theorem 9 

and Exercise 27). 

x 
To Takemura's Corollary 4.1 should be added EH. = I. 

Takemura's Theorem 4.2 (pages 15-16) considers a polynomial P(x) with no 

multiple root and then extends his Theorem 3.3 to show that 

I 
(c)_, (d), (e2) =*A = \X  H.., 

v 1        j=lJ 1J 

where A,, .... A„ are the nonzero characteristic roots of A and the H.. 
1      I iD 

are "independent projections" (principal idempotents). In fact H..H.t., =0 

whenever i ^ i« and/or j ±  j' . The condition that P(xj has no multiple 

root assures that (c) => A diagonable.  Since (d), (e2) => (b) we see the 

interesting result (essentially Takemura's Theorem 4.4, page 21) that 

(4.7)      A diagonable, (b), (d) =» A.  diagonable, i = l,...,k. 
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[We must still include (d) in (4.7) since (b) £• (d) in general; however (b) 

always implies (e2).] 

We may extend (4.7) by noting that a matrix A is diagonable if and only if 

all its characteristic roots are regular (cf. Mirsky, 1955, page 294, Theorem 

10.2.3). The characteristic root A of the matrix A is said to be regular 

whenever its geometric and algebraic multiplicities are equal (cf. Mirsky, 1955, 

page 294, Definition 10.2.1). The algebraic multiplicity of A is the multi- 

plicity of A as a root of the characteristic equation; the geometric multi- 

plicity is the nullity of the matrix A - XI. 

Let A be n*n of rank r, and let A. have rank r., i = l,...,k. Let 
l l 

A., ..., A„ be the nonzero characteristic roots of A. Let m   be the alge- 
l        x. lj 

braic multiplicity and g.. the geometric multiplicity of A. as a character- 

istic root of A., so that, cf. Mirsky (1955, page 214, Theorem 7.6.1), 

(4.8) n > m.. > g.. > 0;   i = l,...,k,   j = 1,...,£. 
IJ   IJ 

Let m   be the algebraic multiplicity and g   the geometric multiplicity of 

A. as a characteristic root of A. Then 

(4.9) n > m  > g  > 1;   j = !,...,£. 

Let m   be the algebraic multiplicity and g   the geometric multiplicity of 

0 as a characteristic root of A., i = l,...,k. Then 

(4.10) m =n-m.m=n-lm.., i = l,...,k, n - m.  = n - J m. . , 
i»      .  ii j=l J 

(4.11) g  = n - r. = n - rank(A.),       i = l,...,k. 
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Hence 

(4.12) n > r.   > m.   > 0; i = l,...,k. 
ii* 

Let    mnf)    be the algebraic multiplicity and let    g        be the geometric multi- 

plicity of    0    as a characteristic root of    A.    Then 

I 
(4.13) m00 =n-m0.     =    n -      \    m      , 

J=l 

(4.14) gQ0 = n - r    =    n - rank(A) 

Hence 

(4.15) n > r > m      > 0. 
0° 

Let 

(4.16) A.   = B.C!, i = l,...,k, 

be full rank decompositions,   so that    B      and    C.     are both    n*r      of rank    r  . 
ii l i 

Then 

(4.17) A =    Z^A.     =       S^B.C!     =    BC\ 

where 

(4.18) B =   (B   ,   ...,  B,)       and      C =  (C. ,   ...,  C ) 
Ik IK 

are both    n*E r. 
1  l 
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Now suppose that 

(b) A.A.  =0 for all    i £ j 

holds.     Then    C!B.   = 0    for all    i t j    and so 
i 3 

(4.19) C'B  =  /CJB \       =    CJB    ©     ...   . ®    C'B  , 

k k 

the direct sum of the    C!B.. 
l  l 

Let am.(A) denote the algebraic multiplicity and let gm.(A) denote the 

geometric multiplicity of A. as a characteristic root of A.  Then using the 

fact that the matrices FG and GF have the same nonzero characteristic roots 

(cf. Mirsky, 1955, page 200, Theorem 7.2.3), we may write for j = 1,...,£ 

k 
(4.20)      m  = am. (A) = am.(BC») = am. (C'B) = T am.(C!B.) 

°J    J       3 3 £\    J  x 1 

= I  am.(B.C!)  = Y 
i=l i=l 

k 
m. 
ij 

while 

k I 
(4.21)      nu = y HL.  = I    T m,, = I  m. 

j=l J   i=l j=l J    i=l l« 

so that 

(4.22)      n - amQ(A)  = E^[n - am^A.)]. 
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We now use the result that the matrices FG - I and GF - I have the same 

nullity, cf. Ouellette (1981. equation (4.147)).  Let v(.) denote nullity. Then 

for each j = 1,..., I 

(4.23) g   .  = gm.(A)   = V(A - A.I)   = v(BC'   - A.I)   =    v(C'B - A.I) 

k k 
=    I V(C!B.   -    A.I    )     =      I v(B.C:   -    A.I ) 

i=l       X X J     i i=l      x 1 J n 

•  IvCAi~  XJV   - .\hy 
i=l 1~1 

Hence when (b) holds all the nonzero characteristic roots of the A., i = l,...,k, 
l 

must be characteristic roots of A, and all the nonzero characteristic roots of 

A must be characteristic roots of A. for some i. 
l 

Furthermore, since g. . ^ m   from (4.8) we obtain 
ij   ij 

C4.24) g   = jg  . Im        =    m ;      j =!,...,£, 
•> 1=1 •>       x=i    •> 

and so for each j = 1,..., Ü 

(4.25) g0. =mo. => g.. =m..;   i = l,...,k. 

Thus if A. is a regular nonzero characteristic root of A then when (b) holds 
J 

A. is also a regular characteristic roott of each A., i = l,...,k. This does 

not, however, hold true for the 0 characteristic root of A, for if k=2 and 

t Notice that g. . = 0 •*=*• m. . = 0; we will then speak of A. as a regular char- 

acteristic root of A.  even though A. does not have A  as a root. 
1 1 3 
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*>=(::) -vC") 
then (b) holds and A = 0 so 0 is a regular characteristic root of A, but 

0 is clearly not a regular characteristic root of either A  or of A . The 

equation (4.23) is no longer valid when A. = 0 since the matrices FG and 

GF do not necessarily have the same nullity (or rank). However 

(4.27) n - gm0(A)  = r < E^ = *\ [n - gm^)] 

Now suppose that in addition 

(d) £jr(Ai)  = r(A) 

holds.    Substitution in  (4.27)   then yields 

(4.28) n -  gmo(A)     =    2*[n - gm^A.)] 

and so 

(4.29) gm0(A)     =    n    -    zj[n - gm^Aj] 

k k 
<    n    -    2l[n - am0(Ai)]     =    n - E^     =    n - m0i 

Hence if    0    is a regular characteristic root of   A    then    0    must be a regular 

characteristic root of    A.,     for all    i = l,...,k.    We have,   therefore,  proved 

the following stronger version of Takemura's Theorems 4.2 and 4.4 and our (4.7). 
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THEOREM 4.1.    Let    A ,   ...,  A      be    nxn    matrices,  not necessarily symmetric, 
i. K 

and let    A = £ A.. Suppose that 

(b) A.A. = 0     /OP aZZ i ^ j. 

2%en £/ze set of nonzero characteristic roots of   A    coincides with the set of 

all the nonzero characteristic roots of all the    A.,  i = l,...,k.    Furthermore, 
i 

the nonzero characteristic root    A of   A is regular if and only if   A is a 

regular nonzero characteristic root of each    A.,  i = l,...,k. 

If3  in addition. 

(d) Ekrank(A ) = rank(A), 
1     l 

then the characteristic root    0 of   A is regular if and only if   0 is a 

regular characteristic root of each    A.,  i = l,...,k. Equivalently, 

2 2 
(4.30) rank(A ) = rank(A) <-»" rank(A.) = rank CA.),  i = l,...,k. 

Mäkeläinen and Styan (1976, Lemma 2) have shown that the zero characteristic 

2 
root of a matrix A is regular if and only if r(A ) = r(A). Such a matrix A 

is said to have index 1, cf. Ben-Israel and Greville (1974, page 169). A direct 

proof of (4.30) goes as follows.  Let 

(4.31)      D = A © ... © Ak     and      K = (I, ..., I)', 

2 2     2 
cf. (1.3) and (1.4) on page 2.  Then under (b)  DKK'D = D  so that A = K'D K, 

while (d) yields 
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C4.32) r(D) = r(K»DK) = r(K'D) = r(DK) 

using Sylvester's Law of Nullity, cf. Anderson and Styan (1980, page 11A). Thus 

under (b) and (d) the result (4.30) becomes 

(4.33) r(K'D2K)  = r(D) 

if and only if 

(4.34) r(D2) = r(D) 

2       ? 
That (4.33) =* (4.34) follows at once from r(K'D K) ^ r(D ) ^ r(D).  To go the 

other way suppose that (4.34) holds. Then using (4.32) and the rank cancellation 

rules  (2.10)  and (2.11)  in Theorem 2 of Marsaglia and Styan (1974, page 271), 

we obtain r(K'D2K) = r(D2K) = r(D2), and so  (4.34) =>• (4.33). 

We see also that if (b) and (d) hold then for any positive integer p 

(4.32) implies that r(K'DPK) = r(DP)  and so we have proved that 

THEOREM 4.2. Let the    nxn matrices    A , ..., A and    A be defined as in 
X K 

Theorem 4.1 and suppose that both    (b) and    (d) hold.    Then for any positive 

integer    p 

(4.35) E^rank(AP) = rank ( ZJAJ J. 

Takemura's Theorem 4.3 (page 16) is well known; for a nice proof see 

Mirsky Q955, page 318, Theorem 10.6.3). 



24 

We may strengthen Takemura's Corollary 4.2 (page 20) by allowing the 

polynomial. P(x) to possibly have multiple roots and by not requiring that 

P(0) = 0.  Instead then let P(0) = cl as on page 15 of this review. Thus 

from (4.3) we find that if P(A.) =0,  i = l,...,k, then under (b) = (i) 

(4.36) P(A) = -(k-l)cl. 

Since (b)  always implies  (e2) = (iv), it remains to consider when does 

(b) imply (d) = (v).  That (b) j>  (d)  in general has already been noted 

(top of page 17 of this review; see also Anderson and Styan (1980, page 5)). 

Takemura's Corollary 4.2 shows that 

(4.37) (b) and A.  diagonable, i = l,...,k =* (d). 

This result, however, is implied by 

(4.38) (b) and  rank(A2) =rank(A.), i = l,...,k •*  (d), 
l        l 

which was proved by Marsaglia and Styan (1974, page 286, Theorem 15(1)). We 

2 
recall that rank(A.) = rank(A.) means that the zero characteristic root of 

l        l 

A. is regular, while A. diagonable means that all the characteristic roots 

are regular, cf. pages 17 and 22 of this review. 
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